

Calibration Sources & Radioactive Standards

Contact: U.S. & Canadian Customers

Sales, Quotes, Questions

sales@radqual.com 208.524.5300 radqual.com

Table of Contents

About Us	5
Ordering/Contact	
α and β Solid Sources	
Handling Precautions	
EAS Point a Sources	
EAS point β sources ESA wide area α and β sources - Discs	
ESA wide area α and β sources - Discs ESA wide area α and β sources - Planchets	
ESA wide area α and β sources - Planchets ESA wide area α and β sources - Rectangular and Square	
x and γ Solid Sources	
EDC γ sources in charcoal filter cartridges	
EGS point γ sources	
EXS point X sources	24
EGE γ sources in vegetable matrix	
EGR γ sources in resin matrix	
ESB γ sources in paper matrix	
Liquid Sources	
- Handling Precautions	
ELS liquid sources	
Waste Drum Standard	
Custom Sources	
Appendices	
Relevant regulations	
Quality and traceability	
Calibration certificate	
Manufacturing tolerances	
Recommended working life	
12ML01 Mixture	44
Technical information	45
Nuclear Data Chart	

Х

EDC γ sources in charcoal filter cartridges
EGS point γ sources
EXS point X sources
EGE γ sources in vegetable matrix
EGR γ sources in resin matrix
ESB γ sources in paper matrix

Li

Н	andling Precautions
Е	LS liquid sources
las	te Drum Standard

Α

Relevant regulations
Quality and traceability
Calibration certificate
Manufacturing tolerances
Recommended working life
2ML01 Mixture
Fechnical information
Nuclear Data Chart

about us

about us

About RadQual/LEA

RadQual imports and distributes LEA products throughout the United States and Canada.

RadQual is a wholly owned subsidiary of International Isotopes, Inc. and manufactures and distributes calibration and reference sources for the nuclear medicine industry. LEA, a wholly owned subsidiary of Orano, produces sources for control and calibration of equipment in the fields of radiation protection and metrology.

LEA's calibration and reference sources are measured according to ISO 17025:2017 under COFRAC¹ accreditation, which provides the same traceability to SI² as the National Institute of Standards and Technology (NIST). LEA products include a wide range of calibration sources, and LEA has provided tens of thousands of these radioactive sources in France and abroad over the past 20 years.

LEA is France's leading manufacturer and distributor of calibration sources and standards. As a laboratory accredited by COFRAC¹ for the measurement of ionizing radiations, LEA provides high-quality sources for control and calibration of equipment in the fields of radiation protection and metrology. Located in the South of France, LEA has manufactured and sold tens of thousands of radioactive sources in France and abroad. LEA is subsidiary of the Orano group. Orano transforms nuclear materials so that they can be used to support the development of society, first and foremost, in the field of energy. The Group offers products and services with high added value throughout the entire nuclear fuel cycle, from raw materials to waste treatment, contributing to the production of low-carbon electricity

¹ COFRAC is France's accreditation body in the field of calibration of ionizing radiation. LEA's scope of accreditation N°2-6386 is available on www.cofrac.fr or upon request. ² SI : International System of Units

Contact: Ordering/Quotes

To place orders, request quotes or more information, U.S. and Canadian customers can email sales@radqual.com or call 208.524.5300 during regular business hours.

For additional information, visit radqual.com or www.orano.group/lea.

International Isotopes

α and β solid sources

Handling Precautions

Alpha and beta sources are considered as sealed sources, with an ISO2919 classification of C11111 or higher.

However, precautions must be taken so that the active surface is not in contact with any other material. LEA recommends handling these sources with tweezers to avoid leaving grease on the surface of the source, which would degrade the spectrum and risk contaminating the user.

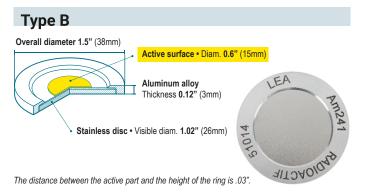
We recommend storing these sources in their original packaging, away from dust and more generally away from the ambient air. It is therefore not recommended cleaning these sources and scrubbing the active area to check for contamination, to avoid damaging and tearing off part of the active surface.

By respecting these precautions for use, the recommended working life of our alpha and beta sources is 10 years.

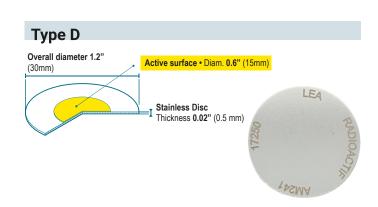
Technical Information

Alpha point sources (EAS) are in the form of a stainless steel disk, unmounted (Type C or D) or sealed on an aluminum ring (Type A or B), at the center of which the radionuclides are electroplated.

Radiological characteristics of the sources are measured with a calibrated grid cell detector.


Production Range

Catalog References	Custom/On Request	
Active Diameter		
15 mm • 0.6 in	From 5 to 75 mm From 0.2 to 2.9 in	
External Diameter		
25 mm • 1 in		
30 mm • 1.2 in	From 25 to 90 mm From 1 to 3.5 in	
38 mm • 1.5 in		
Activity		
300 Bq • 0.008 μCi		
800 Bq • 0.02 μCi	From 10 to 8000 Bq From 0.0003 to 0.2 µCi	
3000 Bq • 0.08 μCi	· · · · · · · · · · · · · · · · · · ·	
Radionuclide		
²⁴¹ Am		
	1	


Standard geometries

The distance between the active part and the height of the ring is .03".

Type C Overall diameter 1" (25mm) Active surface • Diam. 0.6" (15mm) Stainless Disc Thickness 0.02" (0.5 mm)

Reference/Product No.

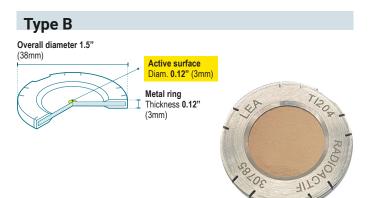
Radionuclide	2π sr alpha flux		k=2 measurement uncertainty	Equivalent activity	Reference
	Under COFRAC* accreditation				
241 A	150	a.s ⁻¹	≤ 1.5%	300 Bq • 0.008 μCi	Am241 EAS [Type] 20
²⁴¹ Am	1500	a.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Am241 EAS [Type] 30

Standard manufacturing tolerance: ± 30% IAEA Category: 5 • ISO2919 Classification: C11111 *Scope N°2-6386 available at www.cofrac.fr or upon request.

How to compose reference: Replace [Type] with the letter A, B, C or D according to the required geometry. For example: Am241 EAS C 20

Technical Information

Radionuclides are deposited between two hotsealed polyester foils (approximately 75µm thick each). Each face of the source is gold vacuumcoated for optimum measurement efficiency. They are then mounted in a steel ring.


Radiological characteristics of the sources are measured with a calibrated gas flow proportional counter.

Production Range

Catalog References	Custom/On Request				
Active Diameter					
3 mm • 0.12 in	From 3 to 30 mm				
30 mm • 1.2 in	From 0.12 to 1.2 in				
External Diameter					
25 mm • 1 in					
38 mm • 1.5 in	From 25 to 60 mm From 1 to 2.4 in				
50 mm • 2 in					
Activity					
80 Bq • 0.002 μCi	From 50 to 4 kBq				
3000 Bq • 0.08 μCi	From 0.001 to 8.1 μCi				
Radionuclide					
²² Na, ³⁶ Cl, ⁶⁰ Co, ⁹⁰ Sr/ ⁹⁰ Y, ¹³⁷ Cs/ ^{137m} Ba, ¹⁴⁷ Pm, ²⁰⁴ Tl, ⁸⁹ Sr, ¹³⁴ Cs, ⁹⁹ Tc	³² P, ³⁵ S, ⁴⁵ Ca, ⁶³ Ni, ¹²⁹ I				

Standard geometries

Reference/Product No.

Radionuclide	4π sr	beta flux	k=2 measurement uncertainty	Equivalent activity	Reference
		Under COFRA	C* accreditation		
³⁶ Cl	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Cl36 EBS [Type] 20
30CI	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Cl36 EBS [Type] 30
⁶⁰ Co	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Co60 EBS [Type] 20
°°Co	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Co60 EBS [Type] 30
¹³⁴ Cs	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Cs134 EBS [Type] 20
	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Cs134 EBS [Type] 30
127.0	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Cs137 EBS [Type] 20
¹³⁷ Cs	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Cs137 EAS [Type] 30
225.1	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Na22 EBS [Type] 20
²² Na	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Na22 EBS [Type] 30
¹⁴⁷ Pm	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Pm147 EBS [Type] 20
""Pm	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Pm147 EBS [Type] 30
90 0	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Sr89 EBS [Type] 20
⁸⁹ Sr	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Sr89 EBS [Type] 30
90 C . 90V	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Sr90 EBS [Type] 20
⁹⁰ Sr + ⁹⁰ Y	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	Sr90 EBS [Type] 30
207-1	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	TI204 EBS [Type] 20
²⁰⁷ TI	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 μCi	TI204 EBS [Type] 30
00-	80	β.s ⁻¹	≤ 1.5%	80 Bq • 0.002 μCi	Tc99 EBS [Type] 20
⁹⁹ Tc	3000	β.s ⁻¹	≤ 1.5%	3000 Bq • 0.08 µCi	Tc99 EBS [Type] 30

Standard manufacturing tolerance: ± 30% IAEA Category: 5 • ISO2919 Classification: C11111

*Scope N°2-6386 available at www.cofrac.fr or upon request.

Kits Available

How to compose reference: Replace **[Type]** with the letter **A**, **B**, or **C** according to the required geometry. For example: **TI204 EBS A 30**

EBS A and EBS B sources are also available in kit form. Radionuclides supplied are ¹⁴⁷Pm, ¹³⁴Cs, ¹³⁷Cs, ⁹⁰Sr+⁹⁰Y, ²⁰⁴Tl and ²²Na with an activity of 0.002 µCi (80 Bq) or 0.08 µCi (3000 Bq). Other activities of EBS sources are available on request.

ESA wide area α and β sources \bullet Discs

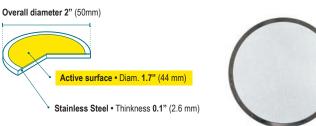
Technical Information

The radionuclides are deposited on a 0.01 in (0.3 mm) thick aluminum substrate (anodized surface), fixed on a stainless steel support of thickness 0.1 in (2.6 mm) ensuring the rigidity of the assembly.

The radiological characteristics (emergent flux) of the sources are measured with a calibrated absolute proportional 2π sr counter.

NOTE: The size of a calibration source should suit the size of the detector to be controlled or calibrated. It is recommended **NOT** to use wide area sources to control detectors of a significantly different size from the detector itself. LEA does not provide any guarantee on results for other uses than those recommended.

Production Range


	Catalog References	Custom/On Request						
Active Diameter								
	15 mm • 0.6 in							
a &	36 mm • 1.4 in	From 15 to 160 mm						
δ	44 mm • 1.7 in	From 0.6 to 6.3 in						
1-	110 mm • 4.3 in	-						
Exte	rnal Diameter							
	30 mm • 1.2 in							
α & β	47 mm • 1.9 in	From 20 to 170 mm						
	50 mm • 2 in	From 0.8 to 6.7 in						
P	120 mm • 4.7 in	-						
Activ	vity							
a	400 Bq • 0.01 µCi	From 100 to 2000 Bq From 0.003 to 0.05 μCi						
β	4000 Bq • 0.11 μCi	From 500 to 8000 Bq From 0.014 to 0.22 μCi						
Radi	onuclide							
а	²⁴¹ Am							
ß	¹⁴ C, ⁶⁰ Co, ⁹⁰ Sr, ¹³⁷ Cs,	³² P. ³⁵ S. ⁴⁵ Ca. ⁸⁹ Sr. ¹²⁹						

³²P, ³⁵S, ⁴⁵Ca, ⁸⁹Sr, ¹²⁹I

Standard geometries

Type L

Type N Overall diameter 1.9" (47mm)

Active surface • Diam. 1.4" (36 mm) • Stainless Steel • Thinkness 0.1" (2.6 mm)

Reference/Product No.

	Radionuclide		alpha flux beta flux	k=2 measurement uncertainty	Equivalent activity	Reference
			Under COFRAC*	accreditation		
a	²⁴¹ Am	200	a.s ⁻¹	≤ 6%	400 Bq • 0.01 μCi	Am241 ESA [Type] 20
	¹⁴ C	1500	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	С14 ESA [Туре] 20
	⁶⁰ Co	1900	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Co60 ESA [Type] 20
β	¹³⁷ Cs	2400	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Cs137 ESA [Type] 20
	¹⁴⁷ Pm	1900	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Pm147 ESA [Type] 20
	⁹⁰ Sr + ⁹⁰ Y	2500	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Sr90 ESA [Type] 20

Standard manufacturing tolerance: ± 30% IAEA Category: 5 • ISO2919 Classification: C11111 *Scope N°2-6386 available at www.cofrac.fr or upon request.

¹⁴⁷Pm

β

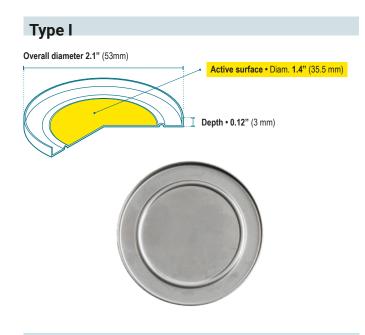
How to compose reference:

Replace **[Type]** with the letter **K**, **L**, **M** or **N** according to the required geometry. For example: Sr90 ESA K 20

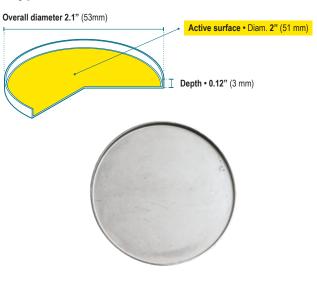
ESA wide area α and β sources • Planchets

Technical Information

The radionuclides are deposited on a 0.01 in (0.3 mm) thick aluminum substrate (anodized surface), fixed on a stainless steel support of thickness 0.1 in (2.6 mm) ensuring the rigidity of the assembly.


The radiological characteristics (emergent flux) of the sources are measured with a calibrated absolute proportional 2π sr counter.

NOTE: The size of a calibration source should suit the size of the detector to be controlled or calibrated. It is recommended **NOT** to use wide area sources to control detectors of a significantly different size from the detector itself. LEA does not provide any guarantee on results for other uses than those recommended.


Production Range

	Catalog References	Custom/On Request						
Active Diameter								
a &	35.5 mm • 1.4 in	From 15 to 160 mm From 0.6 to 6.3 in						
β	51 mm • 2 in							
Exter	rnal Diameter							
α & β	53 mm • 2.1 in	From 20 to 170 mm From 0.8 to 6.7 in						
Activity								
а	400 Bq • 0.01 μCi	From 100 to 2000 Bq From 0.003 to 0.05 μCi						
β	4000 Bq • 0.11 μCi	From 500 to 8000 Bq From 0.014 to 0.22 μCi						
Radionuclide								
а	²⁴¹ Am							
β	¹⁴ C, ⁶⁰ Co, ⁹⁰ Sr, ¹³⁷ Cs, ¹⁴⁷ Pm	³² P, ³⁵ S, ⁴⁵ Ca, ⁸⁹ Sr, ¹²⁹ I						

Standard geometries

Type J

Reference/Product No.

	Radionuclide		alpha flux beta flux	k=2 measurement uncertainty	Equivalent activity	Reference
			Under COFRAC [*]	* accreditation		
a	²⁴¹ Am	200	a.s ⁻¹	≤ 6%	400 Bq • 0.01 μCi	Am241 ESA [Type] 20
	¹⁴ C	1500	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	C14 ESA [Type] 20
	⁶⁰ Co	1900	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Co60 ESA [Type] 20
β	¹³⁷ Cs	2400	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Cs137 ESA [Type] 20
	¹⁴⁷ Pm	1900	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Pm147 ESA [Type] 20
	⁹⁰ Sr + ⁹⁰ Y	2500	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Sr90 ESA [Type] 20

Standard manufacturing tolerance: ± 30% IAEA Category: 5 • ISO2919 Classification: C11111 *Scope N°2-6386 available at www.cofrac.fr or upon request.

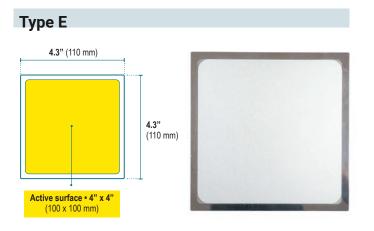
How to compose reference:

Replace **[Type]** with the letter **I** or **J** according to the required geometry. For example: **Sr90 ESA J 20**

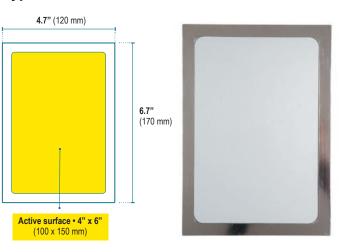
ESA wide area α and β sources • Rectangular and Square

Technical Information

The radionuclides are deposited on a 0.01 in (0.3 mm) thick aluminum substrate (anodized surface), fixed on a stainless steel support of thickness 0.1 in (3 mm) ensuring the rigidity of the assembly.


The radiological characteristics (emergent flux) of the sources are measured with a calibrated absolute proportional 2π sr counter.

NOTE: The size of a calibration source should suit the size of the detector to be controlled or calibrated. It is recommended **NOT** to use wide area sources to control detectors of a significantly different size from the detector itself. LEA does not provide any guarantee on results for other uses than those recommended.

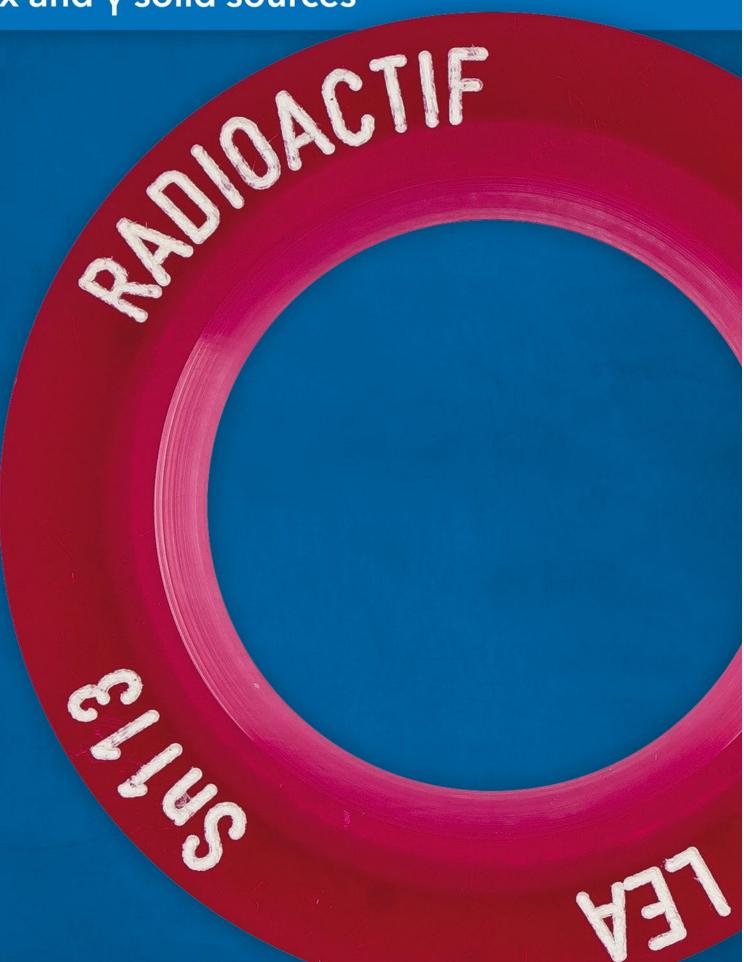

Production Range

	Catalog References	Custom/On Request		
Active Diameter				
a &	100 x 100 mm 4 x 4 in 100 x 150 mm	From 20 x 20 mm to 150 x 150 mm From 0.8 to 0.8 in		
β	4 x 6 in	to 6 x 6 in		
Exter	nal Diameter			
a &	110 x 110 mm 4.3 x 4.3 in	From 26 x 26 mm to 170 x 170 mm		
β	120 x 170 mm 4.7 x 6.7 in	From 1 to 1 in to 6.7 x 6.7 in		
Activ	ity			
a	400 Bq • 0.01 μCi	From 100 to 2000 Bq From 0.003 to 0.05 μCi		
β	4000 Bq ∙ 0.11 µCi	From 500 to 8000 Bq From 0.014 to 0.22 μCi		
Radionuclide				
а	²⁴¹ Am			
β	¹⁴ C, ⁶⁰ Co, ⁹⁰ Sr, ¹³⁷ Cs, ¹⁴⁷ Pm	³² P, ³⁵ S, ⁴⁵ Ca, ⁶³ Ni, ⁸⁹ Sr, ⁹⁹ Tc, ¹²⁹ I		

Standard geometries

Type F

Reference/Product No.


	Radionuclide		alpha flux beta flux	k=2 measurement uncertainty	Equivalent activity	Reference
			Under COFRAC*	accreditation		
а	²⁴¹ Am	200	a.s ⁻¹	≤ 6%	400 Bq • 0.01 μCi	Am241 ESA [Type] 20
	¹⁴ C	1500	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	C14 ESA [Type] 20
	⁶⁰ Co	1900	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Co60 ESA [Type] 20
β	¹³⁷ Cs	2400	β.s⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Cs137 ESA [Type] 20
	¹⁴⁷ Pm	1900	β.s ⁻¹	≤ 6%	4000 Bq • 0.11 μCi	Pm147 ESA [Type] 20
	⁹⁰ Sr + ⁹⁰ Y	2500	β.s ⁻¹	≤6%	4000 Bq • 0.11 μCi	Sr90 ESA [Type] 20

Standard manufacturing tolerance: ± 30% IAEA Category: 5 • ISO2919 Classification: C11111 *Scope N°2-6386 available at www.cofrac.fr or upon request.

How to compose reference:

Replace **[Type]** with the letter **E** or **F** according to the required geometry. For example: **Sr90 ESA E 20**

x and γ solid sources

EDC γ sources in charcoal filter cartridges

Technical Information

Our active charcoal can be impregnated in two ways:

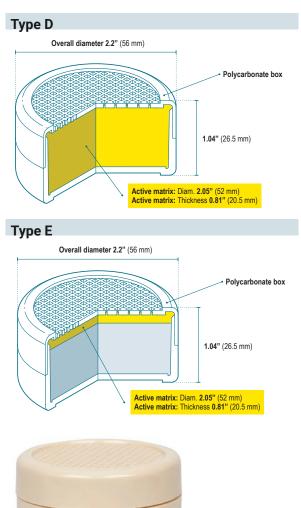
- Surface impregnation, a radioactive disk is placed in contact with one of the inside surfaces of the housing to simulate surface contamination (E geometry)
- Pore volume impregnation, the activated charcoal is homogeneously impregnated (D geometry)

Source activity is measured with calibrated Nal scintillators or HPGe semi-conductors.

Production Range

Catalog References	Custom/On Request			
Container				
Cartridge of useful volume 2.68 in ³	From 3 to 50 mm From 0.12 to 2 in			
Activity				
4 kBq ● 0.1 µCi	From 1 to 1000 kBq From 0.03 to 27 μCi			
Radionuclide				
¹³³ Ba, ¹³⁷ Cs, ¹⁵² Eu Mix 12ML01	⁵¹ Cr, ⁵⁴ Mn, ⁵⁷ Co, ⁶⁰ Co, ⁶⁵ Zn, ⁸⁵ Sr, ⁸⁸ Y, ¹⁰⁹ Cd, ¹¹³ Sn, ¹³⁴ Cs, ¹³⁹ Ce, ²⁴¹ Am(Non-exhaustive list)			

Reference/Product No.


Radionuclide	Activity	k=2 measurement uncertainty	Reference
¹³³ Ba	4 kBq ● 0.11 µCi	≤ 5%	Ba133 EDC D 10
ззва	4 kBq • 0.11 μCi	≤ 5%	Ba133 EDC E 10
¹³⁷ Cs	4 kBq • 0.11 μCi	≤ 7%	Cs137 EDC D 10
	4 kBq • 0.11 μCi	≤ 8%	Cs137 EDC E 10
¹⁵² Eu	4 kBq • 0.11 μCi	≤ 5%	Eu152 EDC D 10
	4 kBq • 0.11 μCi	≤ 5%	Eu152 EDC E 10
4014104+	18.5 kBq ● 0.5 μCi	[6% ; 8%]	12ML01 EDC D 11
12ML01*	18.5 kBq ● 0.5 µCi	[6% ; 8%]	12ML01 EDC E 11

Standard manufacturing tolerance: ± 30% | IAEA Category: 5 | ISO2919 Classification: C11111

* The 12ML01 mixture - ²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ¹¹³Sn, ⁵⁴Mn, ⁶⁵Zn, ⁸⁵Zr, ⁸⁸Y - generates around 15 peaks over an energy range from 60 keV to 1836 keV. The quantity of each radionuclide is chosen so that the counting rates of the main peak of each radionuclide are the same order of magnitude. See appendices for additional information on the 12ML01 mixture and on the other mixes available. Other geometries are available on request.

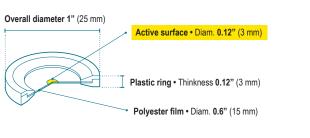
radqual.com

Standard geometries

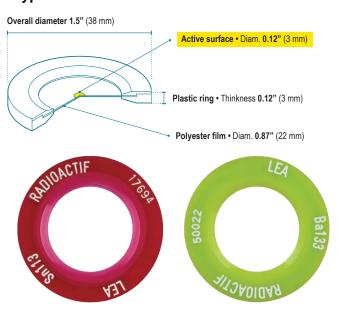
Technical Information

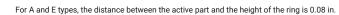
Radionuclides are placed between 2 hot-sealed polyester foils approximately 125 μm thick each, then mounted in a plexiglass ring.

The radiological characteristics of the sources are measured with calibrated Nal scintillators or HPGe semi-conductors.


Production Range

Catalog References	Custom/On Request			
Active Diameter				
3 mm • 0.12 in	From 3 to 50 mm From 0.12 to 2 in			
External Diameter				
25 mm • 1 in From 25 to 75				
38 mm • 1.5 in	From 1 to 3 in			
Activity				
4 kBq • 0.1 μCi				
40 kBq • 1.1 μCi	From 2 to 1000 kBq			
400 kBq • 11 μCi	From 0.05 to 27 μCi			
700 kBq • 19 μCi				
Radionuclide				
²² Na, ⁵⁷ Co, ⁶⁰ Co, ⁸⁸ Y, ¹³³ Ba, ¹³⁷ Cs, ¹⁵² Eu, ²⁴¹ Am	^{110m} Ag, ¹³⁹ Ce, ⁵¹ Cr, ¹³⁴ Cs, ⁵⁹ Fe, ¹³¹ I, ⁵⁴ Mn, ¹¹³ Sn (Non-exhaustive list)			


Standard geometries



Type E

Kits Available

EGS A sources are also available in kits containing 9 sources of 0.11 μ Ci (4kBq), 1.1 μ Ci (40kBq), 11 μ Ci (400kBq), 19 μ Ci (700kBq) : ²⁴¹Am, ⁵⁷Co, ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ⁵⁴Mn, ²²Na, ⁸⁵Sr, ⁸⁸Y. Other activities are available on request.

**Due to the short half life of Cr51, Mn54, and Sr85, these sources are only available twice per year in April and November. Orders must be placed no later than February 28 and October 31 in order to receive these sources by these months. Alternatively, those radionuclides may be substituted for others to be available anytime.

\boldsymbol{x} and $\boldsymbol{\gamma}$ solid sources

Reference/Product No.

Radionuclide	Activity	k=2 measurement uncertainty	Reference
	Under COFRA		
²⁴¹ Am	4000 Bq • 0.11 μCi	≤ 3.5%	Am241 EGS [Type] 10
2"'Am	40000 Bq • 1.1 μCi	≤ 3.5%	Am241 EGS [Type] 15
	4000 Bq • 0.11 μCi	≤ 2%	Am241 EGS [Type] 10
¹³³ Ba	40000 Bq • 1.1 μCi	≤ 2%	Am241 EGS [Type] 1
	400000 Bq • 11 μCi	≤ 2%	Am241 EGS [Type] 20
	4000 Bq • 0.11 μCi	≤ 2%	Am241 EGS [Type] 10
⁵⁷ Co	40000 Bq • 1.1 μCi	≤ 1.7%	Am241 EGS [Type] 1
	400000 Bq • 11 μCi	≤ 1.7%	Am241 EGS [Type] 20
	4000 Bq • 0.11 μCi	≤ 2%	Am241 EGS [Type] 10
⁶⁰ Co	40000 Bq • 1.1 μCi	≤ 1.5%	Am241 EGS [Type] 1
	400000 Bq • 11 μCi	≤ 1.5%	Am241 EGS [Type] 20
	4000 Bq • 0.11 μCi	≤ 3.5%	Cr51 EGS [Type] 10
⁵¹ Cr	40000 Bq • 1.1 μCi	≤ 2%	Cr51 EGS [Type] 15
	400000 Bq • 11 μCi	≤ 2%	Cr51 EGS [Type] 20
	4000 Bq • 0.11 μCi	≤ 2.5%	Am241 EGS [Type] 10
¹³⁷ Cs	40000 Bq • 1.1 μCi	≤ 2%	Am241 EGS [Type] 1
	400000 Bq • 11 μCi	≤ 2%	Am241 EGS [Type] 20
152	4000 Bq • 0.11 μCi	≤ 3%	Am241 EGS [Type] 10
¹⁵² Eu	40000 Bq • 1.1 μCi	≤ 3%	Am241 EGS [Type] 1
	4000 Bq • 0.11 μCi	≤ 2%	Mn54 EGS [Type] 10
⁵⁴ Mn	40000 Bq • 1.1 μCi	≤ 2%	Mn54 EGS [Type] 15
	400000 Bq • 11 μCi	≤ 2%	Mn54 EGS [Type] 20
	4000 Bq • 0.11 μCi	≤ 2%	Am241 EGS [Type] 10
²² Na	40000 Bq • 1.1 μCi	≤ 2%	Am241 EGS [Type] 1
	400000 Bq • 11 μCi	≤ 2%	Am241 EGS [Type] 20
	4000 Bq • 0.11 μCi	≤ 2%	Sr85 EGS [Type] 10
⁸⁵ Sr	40000 Bq • 1.1 μCi	≤ 2%	Sr85 EGS [Type] 15
	400000 Bq • 11 μCi	≤ 2%	Sr85 EGS [Type] 20
	4000 Bq • 0.11 μCi	≤ 2%	Am241 EGS [Type] 10
⁸⁸ Y	40000 Bq • 1.1 μCi	≤ 2%	Am241 EGS [Type] 1
	400000 Bq • 11 μCi	≤ 2%	Am241 EGS [Type] 20
12ML01**	30000 Bq • 0.8 µСі	[3%, 6%]	12ML01 EGS [Type] 1

radqual.com

How to compose reference: Replace [Type] with the letter A or E according to the required geometry. For example: Am241 EGS A 20

Standard manufacturing tolerance: ± 30%

IAEA Category: 5

ISO2919 Classification: C11111

*Scope N°2-6386 available at www.cofrac.fr or upon request.

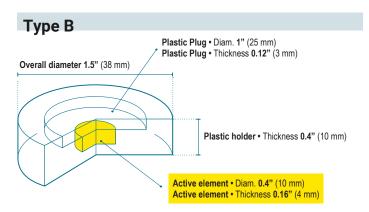
** The 12ML01 mixture -241Am, 109Cd, 139Ce, 57Co, 60Co, 51Cr, 137Cs, 113Sn, 54Mn, 65Zn, 85Sr, 88Y generates around 15 peaks over an energy range from 60 keV to 1836 keV. The quantity of each radionuclide is chosen so that the counting rates of the main peak of each radionuclide are the same order of magnitude. Other geometries are available on request.

Due to the short half life of several contained radionuclides in the 12ML01 mixture, it is only available twice per year in April and November. Orders must be placed at least one month prior to receive this mixed source by these production months.

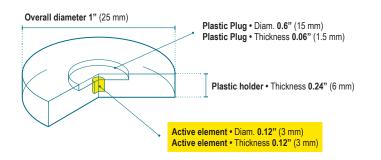
See appendices for additional information on the 12ML01 mixture and on the other mixes available.

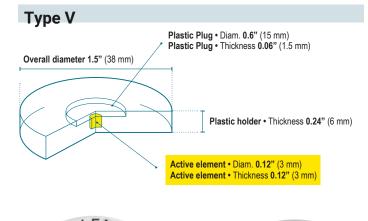
EGS point **y** sources

Technical Information


Radionuclides are deposited in the cavity of a rigid and leak-tight plexiglass cylinder. The cavity is sealed with a plexiglass cap.

The radiological characteristics of the sources are measured with calibrated Nal scintillators, HPGe semi-conductors or ionization chambers.


Production Range


Catalog References	Custom/On Request			
Active Diameter				
3 mm • 0.12 in	From 3 to 50 mm			
10 mm • 0.4 in	From 0.12 to 2 in			
External Diameter				
38 mm • 1.5 in	From 25 to 75 mm From 1 to 3 in			
Activity				
4 kBq • 0.1 μCi				
40 kBq • 1.1 μCi				
400 kBq • 11 μCi	From 2 to 40000 kBq From 0.05 to 10 MBg			
1500 kBq ∙ 41 μCi	·			
3500 kBq • 95 μCi				
Radionuclide				
⁶⁰ Co, ¹³³ Ba, ¹³⁷ Cs, ¹⁵² Eu, ²⁴¹ Am	^{110m} Ag, ¹³⁹ Ce, ⁵¹ Cr, ¹³⁴ Cs, ⁵⁹ Fe, ¹³¹ I, ⁵⁴ Mn, ¹¹³ Sn (Non-exhaustive list)			

Standard geometries

Reference/Product No.

Radionuclide	Activity	k=2 measurement uncertainty	Reference
	4 kBq • 0.11 μCi	≤ 5%*	Am241 EGS [Type] 10
²⁴¹ Am	40 kBq • 1.1 μCi	≤ 5%*	Am241 EGS [Type] 15
	400 kBq • 11 μCi	≤ 5%*	Am241 EGS [Type] 20
	4 kBq ● 0.11 µCi	≤ 5%*	Ba133 EGS [Type] 10
	40 kBq • 1.1 μCi	≤ 5%*	Ba133 EGS [Type] 15
¹³³ Ba	400 kBq • 11 μCi	≤ 5%*	Ba133 EGS [Type] 20
	1500 kBq • 41 μCi	≤ 5%*	Ba133 EGS [Type] 30
	3500 kBq • 95 μCi	≤ 5%*	Ba133 EGS B 40***
	4 kBq • 0.11 μCi	≤ 5%*	Co57 EGS [Type] 10
	40 kBq • 1.1 μCi	≤ 5%*	Co57 EGS [Type] 15
⁵⁷ Co	400 kBq • 11 μCi	≤ 5%*	Co57 EGS [Type] 20
	1500 kBq • 41 μCi	≤ 5%*	Co57 EGS [Type] 30
	3500 kBq • 95 μCi	≤ 5%*	Co57 EGS [Type] 40
	4 kBq • 0.11 μCi	≤ 5%*	Co60 EGS [Type] 10
	40 kBq • 1.1 μCi	≤ 5%*	Co60 EGS [Type] 15
⁶⁰ Co	400 kBq • 11 μCi	≤ 5%*	Co60 EGS [Type] 20
	1500 kBq • 41 μCi	≤ 5%*	Co60 EGS [Type] 30
	3500 kBq • 95 μCi	≤ 5%*	Co60 EGS B 40***
	4 kBq • 0.11 μCi	≤ 5%*	Cs137 EGS [Type] 10
	40 kBq • 1.1 μCi	≤ 5%*	Cs137 EGS [Type] 15
¹³⁷ Cs	400 kBq • 11 μCi	≤ 5%*	Cs137 EGS [Type] 20
	1500 kBq • 41 μCi	≤ 5%*	Cs137 EGS [Type] 30
	3500 kBq • 95 μCi	≤ 5%*	Cs137 EGS B 40***
	4 kBq • 0.11 μCi	≤ 5%*	Eu152 EGS [Type] 10
	40 kBq • 1.1 μCi	≤ 5%*	Eu152 EGS [Type] 15
¹⁵² Eu	400 kBq • 11 μCi	≤ 5%*	Eu152 EGS [Type] 20
	1500 kBq • 41 μCi	≤ 5%*	Eu152 EGS [Type] 30
	3500 kBq • 95 µCi	≤ 5%*	Eu152 EGS B 40***

How to compose reference: Replace [Type] with the letter B, V or H according to the required geometry. For example: Cs137 EGS B 40

Standard manufacturing tolerance: ± 30%

IAEA Category: 5

ISO2919 Classification: C22212

* The calibration of sources can be performed on request, according to COFRAC** accredited protocols. The measurement uncertainties at k=2 are lower than or equal to 3%.

**Scope N°2-6386 available at www.cofrac.fr or upon request.

*** Only available in type B geometry.

EXS point X sources

Technical Information

Radionuclides are placed between 2 hot-sealed polyester foils approximatly 75 µm thick each, then mounted in a plexiglass ring.

The radiological characteristics of the sources are measured with calibrated Nal scintillators or HPGe semi-conductors.

Production Range

Catalog References	Custom/On Request			
Active Diameter				
3 mm • 0.12 in	From 3 to 50 mm From 0.12 to 2 in			
External Diameter				
38 mm • 1.5 in	From 25 to 75 mm From 1 to 3 in			
4π sr flux				
16000 X.s-1	From 1000 X.s-1 to 400000 X.s-1			
Radionuclide				
⁵⁵ Fe, ¹⁰⁹ Cd	⁶⁵ Zn, ⁸⁵ Sr			

Standard geometries

The distance between the active part and the height of the ring is 0.8 in.

EGE γ sources in vegetable matrix

Technical Information

Our vegetable matrix is made with dry and crushed plants. Radionuclides are mixed in the volume of the matrix.

The whole is put in a standard container or in a container adapted to your needs. Source activity is measured with Nal scintillators or HPGe semi-conductors.

Production Range

Catalog References	Custom/On Request		
Activity			
1 kBq • 0.03 μCi	From 1 to 1000 kBq From 0.03 to 27 μCi		
Radionuclide			
Mix 12ML01	 ²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁵¹Ci ¹³⁷Cs, ¹¹³Sn, ⁵⁴Mn, ²²Na, ⁸⁵Sr, ⁸⁸Y (Non-Exhaustive list) 		

Reference/Product No.

Radionuclide	4π sr X flux	k=2 measurement uncertainty	Equivalent activity	Reference
	Under COFRA	AC* accreditation		
¹⁰⁹ Cd	16000 X.s ⁻¹	≤ 5% 1	5700 Bq • 0.42 μCi	Cd109 EXS B 10
⁵⁵ Fe	16000 X.s ⁻¹	≤ 5% 1	5700 Bq • 0.42 μCi	Fe55 EXS B 10

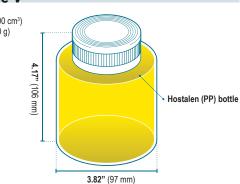
Standard manufacturing tolerance: ± 30%

IAEA Category: 5 • ISO2919 Classification: C11111

*Scope N°2-6386 available at www.cofrac.fr or upon request.

Reference/Product No.

Radionuclide	Activity	k=2 measure	ment uncertainty	Reference
12ML01*	1 kBq ● 0.03 µCi	[8% ; 8.5%]	15700 Bq • 0.42 μCi	12ML01 EGE V 1KBQ


Standard manufacturing tolerance: ± 30%. IAEA Category: 5 • ISO2919 Classification: C11111

* The 12ML01 mixture - ²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ¹¹³Sn, ⁵⁴Mn, ⁶⁵Zn, ⁸⁵Zr, ⁸⁸Y - generates around 15 peaks over an energy range from 60 keV to 1836 keV. The quantity of each radionuclide is chosen so that the counting rates of the main peak of each radionuclide are the same order of magnitude. See appendices for additional information on the 12ML01 mixture and on the other mixes available. Other geometries are available on request.

Standard geometries

SG500N Type V

Useful volume 30 in³ (500 cm³) Resin mass 20.3 oz (100 g)

EGR y sources in resin matrix

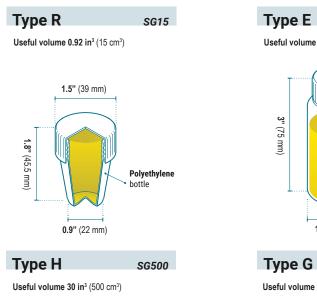
Technical Information

Radionuclides are incorporated into a thermosetting resin, which is then poured into container.

Our resin sources are sealed sources and are characterized by water equivalent activity, to avoid risks and constraints associated with liquid sources. The radiological characteristics of the sources are measured with calibrated Nal scintillators or HPGe semi-conductors.

Reference/Product No.

Radionuclide	Water equivalent activity	k=2 measurement uncertainty	Reference
	Under COFRA	C* accreditation	
¹⁵² Eu	37000 Bq • 1 μCi	≤ 5%	Eu152 EGR [Type] 15
¹³³ Ba	37000 Bq • 1 μCi	≤ 5%	Ba133 EGR [Type] 15
¹³⁷ Cs	37000 Bq • 1 μCi	≤ 5%	Cs137 EGR [Type] 15
	5000 Bq • 0.14 μCi	[3% ; 6%]	12ML01 EGR [Type] 05
	18000 Bq • 0.5 μCi	[3% ; 6%]	12ML01 EGR [Type] 10
12ML01**	37000 Bq • 1 μCi	[3% ; 6%]	12ML01 EGR [Type] 15
	55000 Bq • 1.5 μCi	[3% ; 6%]	12ML01 EGR [Type] 20
	74000 Bq • 2 μCi	[3% ; 6%]	12ML01 EGR [Type] 30

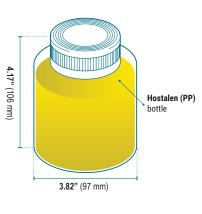

Standard manufacturing tolerance: ± 30% | IAEA Category: 5 • ISO2919 | Classification: C11111

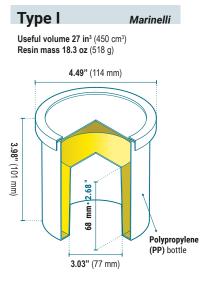
*Scope N°2-6386 available at www.cofrac.fr or upon request.

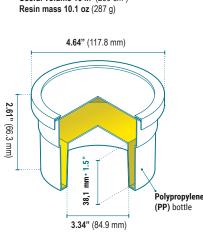
** The 12ML01 mixture - ²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ¹¹³Sn, ⁵⁴Mn, Zn, ⁸⁵Sr, ⁸⁸Y - generates around 15 peaks over an energy range from 60 keV to 1836 keV. The quantity of each radionuclide is chosen so that the counting rates of the main peak of each radionuclide are the same order of magnitude. See appendices for additional information on the 12ML01 mixture and on the other mixes available. Other geometries are available on request.

Production Range

Catalog References	Custom/On Request	
Container		
15 ml		
50 ml]	
250 ml	Any type of container with a	
450 ml	volume between 10 ml and	
500 ml	3000 ml.	
1000 ml		
3000 ml		
Activity		
5 kBq • 0.14 μCi		
18 kBq ● 0.5 μCi		
37 kBq • 1 μCi	From 100 Bq to 1 MBq From 0.003 to 27 µCi	
55 kBq • 1.5 μCi		
74 kBq • 2 μCi		
Radionuclide		
¹³³ Ba, ¹³⁷ Cs, ¹⁵² Eu Mix 12ML01	⁵¹ Cr, ⁵⁴ Mn, ⁵⁷ Co, ⁶⁰ Co, ⁶⁵ Zn, ⁸⁵ Sr, ⁸⁸ Y, ¹⁰⁹ Cd, ¹¹³ Sn, ¹³⁴ Cs, ¹³⁷ Cs, ¹³⁹ Ce, ²⁴¹ Am (Non-exhaustive list)	

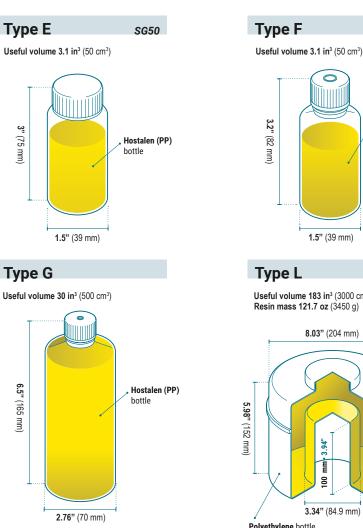



3" (75


6.5" (165

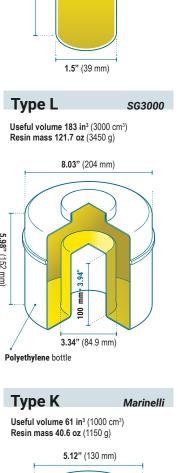
Type M

Standard Geometries

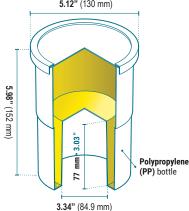

How to compose

reference:

Replace [Type] with the letter E, F,


G, H, I, K, L, M or **R** according to the required geometry. For example:

Ba133 EGR E 15

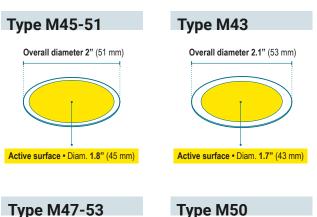


Useful volume 15 in³ (250 cm³)

Hostalen (PP)

hottle

ESB y sources in paper matrix


Technical Information

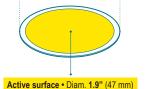
Radionuclides are deposited on a filter paper, which is then hot-sealed between two thin polyester foils. Source activity is measured with Nal scintillators or HPGe semi-conductors.

Production Range

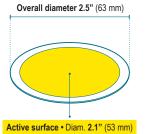
Catalog References	Custom/On Request		
Active Diameter			
43 mm • 1.7 in			
45 mm • 1.8 in			
47 mm • 1.9 in]		
50 mm • 2 in	From 15 to 160 mm From 0.6 to 6.3 in		
53 mm • 2.1 in			
60 mm • 2.4 in			
120 mm • 4.7 in	1		
External Diameter			
51 mm • 2.01 in			
53 mm • 2.1 in			
60 mm • 2.4 in	From 20 to 170 mm		
63 mm • 2.5 in	From 0.8 to 6.7 in		
70 mm • 2.8 in			
130 mm • 5.1 in			
Activity			
10000 Bq • 0.3 μCi			
20000 Bq • 0.5 μCi	From 1 kBg to 1 MBq From 0.03 to 27 μCi		
40000 Bq • 1.1 μCi	- ποιποίος το 27 μοι		
Radionuclide			
12ML01*	⁵¹ Cr, ⁵⁴ Mn, ⁵⁷ Co, ⁶⁰ Co, ⁶⁵ Zn, ⁸⁵ Sr, ⁸⁸ Y, ¹⁰⁹ Cd, ¹¹³ Sn, ¹³⁴ Cs, ¹³⁹ Ce, ²⁴¹ Am(Non-exhaustive list)		

Standard geometries

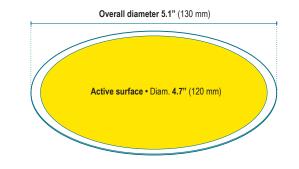
Overall diameter 2.4" (60 mm)


Active surface • Diam. 2" (50 mm)

Overall diameter 2.8" (70 mm)


Active surface • Diam. 2.4" (60 mm)

Type M60



Type M120

Reference/Product No.

Radionuclide	Activity	k=2 mea
	10000 Bq • 0.3 μCi	≤ 10%
12ML01*	20000 Bq • 0.5 μCi	≤ 10%
	40000 Bq • 1.1 μCi	≤ 10%

Standard manufacturing tolerance: ± 30% IAEA Category: 5 ISO2919 Classification: C11111

* The 12ML01 mixture - ²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ¹¹³Sn, ⁵⁴Mn, ⁶⁵Zn, ⁸⁵Sr, ⁸⁸Y - generates around 15 peaks over an energy range from 60 keV to 1836 keV. The quantity of each radionuclide is chosen so that the counting rates of the main peak of each radionuclide are the same order of magnitude. See appendices for additional information on the 12ML01 mixture and on the other mixes available.

surement uncertainty	Reference
	12ML01 ESB [Type] [10KBQ]
	12ML01 ESB [Type] [20KBQ]
	12ML01 ESB [Type] [40KBQ]

How to compose reference: Replace [Type] with the codes M43, M50, M53, M60, M120, M45-51, or M47-53 according to the required geometry.

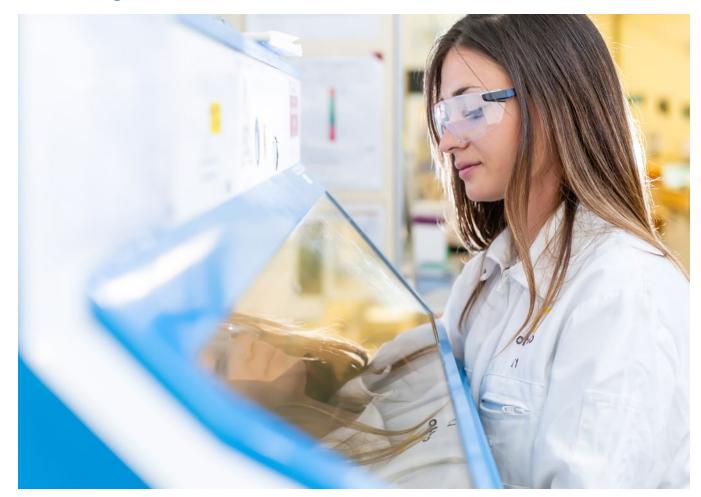
For example: 12ML01 ESB M47-53 [10KBQ]

liquid sources

d'Activité

rance

DE: IODE 125


125 ELSL 20

RADIOACTIVE MATERIAL

FICTIF (0 MBg

Handling Precautions

Liquid sources are considered as unsealed sources.

PPE (goggles, gloves, overalls, lead protection as appropriate) must be worn. The use of accessories (tweezers, file, ampoule holder and ampoule breaker) is recommended to limit radiological exposure and to reduce the risk of contamination. During a dilution, the diluent used must have the same chemical composition and the same nonradioactive material concentration as the provided source (LEA provides on request the chemical carriers used for the manufacture of its sources).

ELS liquid sources

Technical Information

The specific activity of our liquid sources is characterized by means of Nal scintillators, HPGe semi-conductors or liquid scintillation analyzers. They are calibrated under COFRAC* protocols. The measurement uncertainty varies between 1% and 8% depending on the radionuclide and the geometry.

Activities

The specific activity levels available as catalog reference are:

- 0.001 µCi/g (0.04 kBq/g)
- 0.01 µCi/g (0.4 kBq/g)
- 1.1 µCi/g (40 kBq/g)
- 21.6 µCi/g (800 kBq/g)
- 261.2 µCi/g (8 000 kBq/g)

Standard geometries

- Ampoules
- V-Vial bottles
- Penicillin bottles
- Standardized bottles

Our liquid sources can be conditioned in other geometries offered in our catalog or provided by the customer.

2.13" (54

Type U

1.73" (44 mm)

Type D

2.27" (57.7

Useful volume 0.06 in³ (1 cm³)

0.61" (15.4 mm)

0.51" (13 mm)

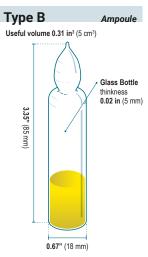
Useful volume 0.06 in³ (1 cm³)

0.81" (20.5 mm)

0.92" (23.5 mm)

Type A Ampoule Useful volume 0.06 in³ (1 cm³)

0.67" (17 mm)


Glass Bottle

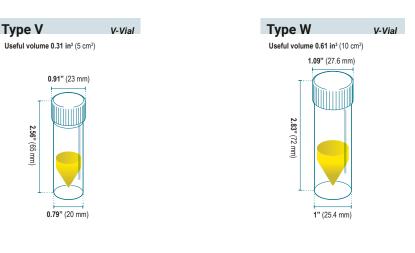
V-Vial

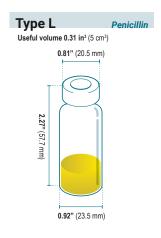
Penicillin

thinkness 0.02 in (5 mm)

Type B

Type V





Reference/Product No. - ELS liquid sources

Activity [Act]

Geometries [Type]

• Ampoules..... **A** or **B** • V-Vial..... **U**, **V** or **W**

• 0.001 µCi/g

- 0.01 µCi/g
- Penicillin **D**, **J*** or **L** • 1.1 µCi/g
 - 21.6 µCi/g

• 261.2 µCi/g

• Other activity on request

How to compose reference:

Replace [Type] and [Act] with the letter and the value according to the required geometry and activity.

For example, a 5ml ampoule (Type B) containing 1.1 μ Ci/g (40 kBq/g) of ¹³⁷Cs is referenced as Cs137 ELS B 40kBq/g.

	Radionuclide	Chemical form		Carrier	Reference	Notes
	²³⁷ Np	HCL 6N ou HNC	D₃ 3N	Oxalic acid [33µg/g]	NP237 ELS [Type] [Act]	Available geometries: A, B, U, V, W Max = 800 kBq/g
a ay	²⁴¹ Am	HNO ₃ 1N		EuCl ₃ [10µg/g]	Am241 ELS [Type] [Act]	Available geometries: A, B, U, V, W Max = 800 kBq/g Max = 8000 kBq/g for Type A & B
	³Н	H ₂ O	-		H3 ELS [Type] [Act]	Only available in A and B type Max = 800 kBq/g
	¹⁴ C	H ₂ O	-	:ose [50μg/g] Idehyde [1mg/g]	C14 ELS [Type] [Act]	Max = 800 kBq/g
	³² P	HCL 0,1N	Na ₂ HP	O ₄ [10μg/g]	P32 ELS [Type] [Act]	Max = 800 kBq/g
	³⁵ S	HCL 0,1N	Na ₂ SC	0 ₄ [10µg/g]	S35 ELS [Type] [Act]	Max = 800 kBq/g
	³⁶ Cl	H ₂ O	NaCl [10µg/g]	Cl36 ELS [Type] [Act]	Max = 800 kBq/g
β	⁴⁵ Ca	HCL 0,1N	CaCl_2	[10µg/g]	Ca45 ELS [Type] [Act]	Max = 800 kBq/g
	⁶³ Ni	HCL 0,1N	NiCl ₂ [10µg/g]	Ni63 ELS [Type] [Act]	Max = 800 kBq/g
	⁸⁹ Sr	HCL 0,1N	SrCl ₂ [20µg/g]	Sr89 ELS [Type] [Act]	Max = 800 kBq/g
	⁹⁰ Sr + ⁹⁰ Y	HCL 0,1N		20µg/g] [10µg/g]	Sr90 ELS [Type] [Act]	-
	⁹⁹ Tc	H ₂ O	-		Tc99 ELS [Type] [Act]	Max = 800 kBq/g
	¹⁴⁷ Pm	HCL 0,1N	LaCl ₃ [10µg/g]	Pm147 ELS [Type] [Act]	Max = 800 kBq/g

liquid sources

	Radionuclide	Chemical form	Carrier	Reference	Notes
	²² Na	HCL 0,1N	NaCl [10µg/g]	Na22 ELS [Type] [Act]	-
	⁵¹ Cr	HCL 0,1N	CrCl ₃ [60µg/g]	Cr51 ELS [Type] [Act]	-
	⁵⁴ Mn	HCL 0,1N	MnCl ₂ [26µg/g]	Mn54 ELS [Type] [Act]	-
	⁵⁵ Fe	HCL 0,1N	FeCl ₃ [10µg/g]	Fe55 ELS [Type] [Act]	-
	⁵⁷ Co	HCL 0,1N	CoCl ₂ [10µg/g]	Co57 ELS [Type] [Act]	-
	⁵⁹ Fe	HCL 1N	FeCl3 [10µg/g]	Fe59 ELS [Type] [Act]	-
	⁶⁰ Co	HCL 0,1N	CoCl ₂ [10µg/g]	Co60 ELS [Type] [Act]	-
	⁶⁵ Zn	HCL 0,1N	ZnCl ₂ [55µg/g]	Zn65 ELS [Type] [Act]	-
	⁸⁵ Sr	HCL 0,1N	SrCl ₂ [20µg/g]	Sr85 ELS [Type] [Act]	-
	⁸⁸ Y	HCL 0,1N	YCl ₃ [10µg/g]	Y88 ELS [Type] [Act]	-
βγ	¹⁰⁹ Cd	HCL 1N	CdCl ₂ [10µg/g]	Cd109 ELS [Type] [Act]	-
Y	^{110M} Ag	NH ₄ OH 0.1N ou 1N	AgCN [10µg/g]	Ag110 ELS [Type] [Act]	-
	¹¹³ Sn	HCL 6N	SnCl₄[10µg/g]	Sn113 ELS [Type] [Act]	-
	125	H ₂ O	Na₂S₂O₃[50µg/g] + Nal [50µg/g]	I125 ELS [Type] [Act]	•
	129	H ₂ O	Na ₂ S ₂ O ₃ [50µg/g] + Nal [50µg/g]	I129 ELS [Type] [Act]	-
	131	H ₂ O	Na ₂ S ₂ O ₃ [50µg/g] + Nal [50µg/g]	I131 ELS [Type] [Act]	-
	¹³³ Ba	HCL 1N	BaCl ₂ [33µg/g]	Ba133 ELS [Type] [Act]	-
	¹³⁴ Cs	HCL 0,1N	CsCl [10µg/g]	Cs134 ELS [Type] [Act]	-
	¹³⁷ Cs	HCL 0,1N	CsCl [10µg/g]	Cs137 ELS [Type] [Act]	-
	¹³⁹ Ce	HCL 0,1N	CeCl ₃ [10µg/g]	Ce139 ELS [Type] [Act]	
	¹⁵² Eu	HCL 1N	EuCl3 [10µg/g]	Eu152 ELS [Type] [Act]	-
/lix Y	12ML01*	HCL 1N	???	12ML01 ELS [Type] [Act]	Available: • 0.002 µCi/g • 0.02µCi/g • 1.1 µCi/g • 21.6 µCi/g

Standard manufacturing tolerance: ± 30% | IAEA Category: 5

* The 12ML01 mixture - ²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ¹¹³Sn, ⁵⁴Mn, ⁶⁵Zn, ⁸⁵Sr, ⁸⁸Y - generates around 15 peaks over an energy range from 60 keV to 1836 keV. The quantity of each radionuclide is chosen so that the counting rates of the main peak of each radionuclide are the same order of magnitude. See appendices for additional information on the 12ML01 mixture and on the other mixes available. Other geometries are available on request.

waste drum

-

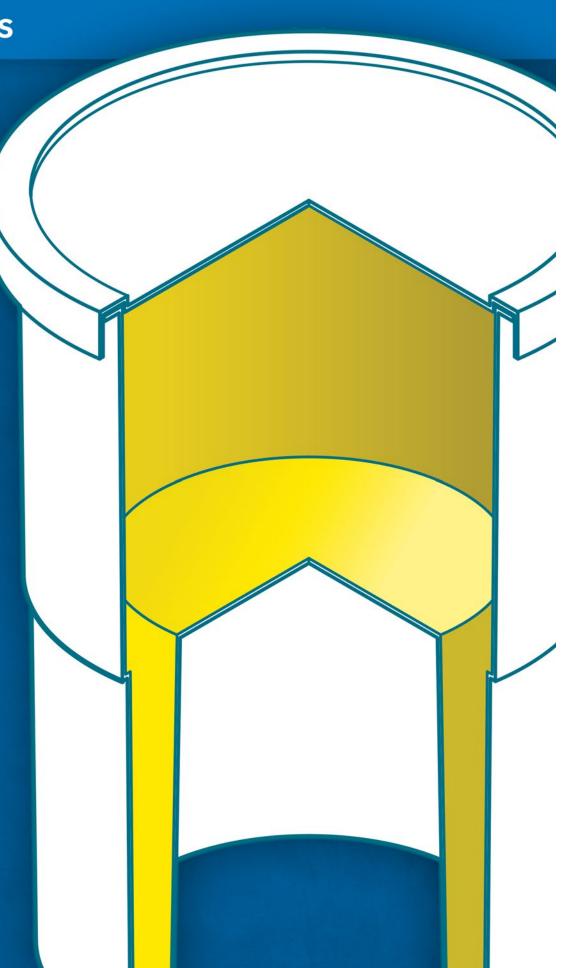
Waste Drum Standard

Technical Information

Radionuclides: ²⁴¹Am, ⁶⁰Co, ¹³⁷Cs, ¹⁵²Eu, ¹³³Ba, alone or mixed Activities: from 3nCi to 3mCi Matrix: PVC, foam, steel,... Waste: 100 or 200 liters drums, Mesh boxes Sealed Source: ISO2919 C11111

custom sources

custom sources


initiated to validate:

- LEA's license.
- COFRAC* accreditation.

few weeks).

appendices

appendices

Relevant regulations

Based in France, LEA operates under the authorization of the French Nuclear Safety Authority ASN (license No. F530042) according to France's Public Health regulation. LEA is licensed to manufacture, distribute, import and export nuclides, sources, products or devices for industrial, medical and research applications.

Our sealed sources meet the requirements of ISO 2919, which validates their quality as sealed sources following specific tests.

LEA also abides by the transportation regulations, both European (ADR) and international (IAEA ICAO, IATA).

Some sources are subject to export control on dual-use goods in accordance with CE Regulation 428/2009 from council of 5 May 2009 and its upcoming revisions. These sources are subject of a specific certification request (End User Certificate). They are clearly identified in red in the catalog.

Threshold for the radionuclides concerned by the dual purpose measure :

Whatever the activity :Uranium 233Uranium 235Pluto

If the activity is greater than 0.7mCi (26MBq) : Neptunium 237

If the activity is greater than 10mCi (0.37 GBq) : Radium 226

If the activity is greater than 100mCi (3.7 GBq) :

ium 227 Ca
um 241 C
um 244 Ei
olinium 14
nium 208 Po
um 223 Tł
ium 230 Ui

Whatever the activity of Americium 241: Any AmBe neutron source to be exported outside the European Union

We kindly remind our foreign customers to strictly comply with the regulatory requirements of the country in which they own and use the sources provided by LEA.

radqual.com

Plutonium 239

Californium 253 Curium 242 Einsteinium 253 48 Plutonium 236 Polonium 209 Thorium 227 Jranium 232

Quality and traceability

LEA's quality system meets requirement of French and international standards. LEA is:

- ISO 9001 certified (certificate 2019/83489.1);
- COFRAC* accredited (for calibration in the field of ionising radiation; NF EN ISO/IEC 17025: 2017, scope N°2-6386 available on www.cofrac.fr or upon request).

LEA is accredited by COFRAC*, France's accreditation body signatory to ILAC MRA** in the field of calibration of ionizing radiations, in accordance with ISO 17025:2017. LEA's traceability to the International System of Units (SI) is performed through calibrations with LNHB (Laboratoire National Henri Becquerel), France's National Metrology Institute (equivalent to NIST in the US). LNHB is also accredited by COFRAC in the field of calibration of ionizing radiations. Both NIST and LNHB are signatories to CIPM-MRA***, meaning NIST and LNHB mutually recognize the validity of their calibrations and certificates. Therefore, through both COFRAC accreditation and calibrations traceable to LNHB, LEA certificates provide the same traceability to SI as **NIST-traceable certificates.**

• Our radiation protection management system is certified according to the order of November 27, 2013 relating to companies operating in establishments carrying out nuclear activities by the Qualianor organization (certificate No.296-R).

Therefore, every year several internal and external audits are carried out by independent organizations and contribute to ensure optimal quality.

Calibration certificate

Each source calibrated under COFRAC* accreditation scope will be supplied with a COFRAC* calibration certificate, which mentions the calibration result and related uncertainty, the measurement method. The possible impurity content can be mentioned upon request.

LEA can also supply sources without a COFRAC* calibration certificate:

- Atandard sources, which calibration is performed out of LEA's COFRAC* accreditation scope,
- Check sources with a nominal activity level.

The certificate must be kept for the whole duration of the source's detention (the calibration certificate will be requested during the spent source recovery process).

Upon request and according to your applications, LEA can also provide a sealed source calibration certificate.

* Scope N°2-6386 available on www.cofrac.fr or upon request.

** ILAC MRA: International Laboratory Accreditation Cooperation Mutual Recognition Arrangement

*** CIPM-MRA: International Committee for Weights and Measures - Mutual Recognition Arrangement

* Scope N°2-6386 available on www.cofrac.fr or upon request

		artificate N° CT/2	00402/20/0547		Page 2/
Product code		Serial number		Radionuclide	
CS137EBS0	C30	30	702		¹⁷ Cs
1 MEANS AND M	ETHODS				
Type of calibration	n	FI	ux	Impu	rity rate
Unit		5	4	%	
Detector used		4π β proport	ional counter	Semi-con	ductor GeHP
Reference of the measurement equ	upment	CN	IB3	CSGHP1	
Method employed	1	Impulses	counting	y-ray sp	ectrometer
The environmental co 2 NOMINAL CHA					
Ring thickness			3mm		
External diameter			SOmm		
Substrate			Coated-gold pla	istic film	
Active diameter Sealed source class			30mm	ing to NF M61-0	
β particles flux			3035	i β.s ⁻¹ in 4π sr	
β particles flux			3035	β.s" in 4π sr	
Reference date at			3035	23/06/2020	
Reference date at Extended relative	uncertain		3035	23/06/2020 ± 1,5	
Reference date at Extended relative Daughter products	uncertain s	ity (%-k=2)	3035	23/06/2020 ± 1,5 ¹³⁷ Ba ^m	
Reference date at Extended relative Daughter products y Impurities (% at	uncertain s the refere	ity (%-k=2)	3035	23/06/2020 ± 1,5 ¹³⁷ Ba ^m < 0.1	
Reference date at Extended relative Daughter products y Impurities (% at Equivalent activity	uncertain s the refere	ity (%-k=2)		23/06/2020 ± 1,5 ¹³⁷ Ba ^m < 0.1 3,03 kBq	
Reference date at Extended relative Daughter products y Impurities (% at Equivalent activity Leak test (*)	uncertain s the reference r (**)	ty (%-k=2) ence date) (**)	Wipe test :	23/06/2020 ± 1,5 ¹³⁷ Ba ^m < 0.1 3,03 kBq OK	17/06/2020
Reference date at Extended relative Daughter products y Impurities (% at Equivalent activity Leak test (*) No surface contain	uncertain s the refere r (**) mination (ty (%-k=2) ence date) (**)		23/06/2020 ± 1,5 ³³⁷ Ba ^m < 0.1 3,03 kBq	17/06/2020 17/06/2020
Reference date at Extended relative Daughter products y Impurities (% at Equivalent activity Leak test (*)	uncertain s the reference r (**) mination (hnician	ty (%-k=2) ence date) (**) *)	Wipe test :	23/06/2020 ± 1,5 ¹³⁷ Ba ^m < 0.1 3,03 kBq OK	
Reference date at Extended relative Daughter products y Impurities (% at Equivalent activity Leak test (*) No surface contan Measurement tecl	uncertain s the reference ("") mination (hnician -003 / ISO ipurities a pertainties he uncert ties comp	ty (%-k=2) ence date) (**) ") ") ser not covered by mentioned are 8 iainties types hav conents reference	Wipe test : Wipe test : y the Cofrac acc hose correspond e calculated take standards :me	23/06/2020 ± 1,5 ¹³⁷ Ba ^m < 0.1 3,03 kBq OK OK OK OK reditation ing to two incer ng into account ans of calibratic	17/06/2020 titude
Reference date at Extended relative Daughter products Equivalent activity Leak test (*) No surface contain Measurement tecl (*) According NF ME1 (*) Activity and in The extended unc composed type. T.	uncertain the reference ("") mination (hnician -003/ISO ipurities a certainties he uncert ties comp ta of the of the of the of the of uncertainties the of the of which accord the of the of the of	ty (%-k=2) ince date) (**) ince date) (**) *) 9978 ire not covered b mentioned are th ainties types hav conents reference alibrated instrum ith Cofrac / Etale ing to the Intern	Wipe test : Wipe test : Wipe test : y the Cofrac acc hose correspond e calculated tak standards : me ent, repeatability innage trademar ational unit syst	23/06/2020 ± 1,5 ¹³⁷ Ba ^m < 0.1 3,03 kBq OK OK OK OK we ditation ing to two incer ng into account ans of calibratic (k guarantees th m for those co	17/06/2020 titude the on, environme te traceability

Manufacturing tolerances

Product type	Deviation from the nominal activity
Nominal solutions	± 30%
Standard sealed sources and standard solutions	± 30%
Medical products: flood sources, pen point markers, dose calibrator sources	- 15% - + 30%

Recommended working life

The guality of calibration standards can deteriorate due to physical & chemical phenomena (eg. degradation of liquid's homogeneity, loss of active deposits' adherence over time) and usage conditions (frictions, dust...).

From a physical integrity standpoint, the recommended working life of sealed sources according to ISO2919 is 10 years in normal usage conditions (usage guidelines provided with our sources).

From a metrological standpoint, our metrological values are valid in our calibration's conditions. We recommend using these values no longer than 2 radioactive periods, with a maximum of 2 years from the reference calibration date, due to cumulative uncertainties from radioactive periods as well as interactions between matter and ionizing radiations.

12ML01 Mixture

Composition of the mixture

12ML01 60 k	(eV – 1 836 ke	V					
Radionuclides	Main rays	% in activity (indicatif)		Emis	sion spectrum		
⁵¹ Cr	320 keV	22,1%					
⁵⁴ Mn	835 keV	5,8%					
⁵⁷ Co	122 keV 137 keV	1,1%	1 000 000				
⁶⁰ Co	1 173 keV 1 333 keV	8,2%	100 000				[
⁶⁵ Zn	1 116 keV	16,5%		have have a second seco			
⁸⁵ Sr	514 keV	3,7%	Counts				
88γ	898 keV 1 836 keV	6,9%	3 100 —				
¹⁰⁹ Cd	88 keV	22,4%	10				and the second
¹¹³ Sn	392 keV	4,1%	1				li qui pari
¹³⁷ Cs	662 keV	5,6%	0	500	1 000	1 500	2 000
¹³⁹ Ce	166 keV	1,4%			Energy (keV)		
²⁴¹ Am	60 keV	2,2%					

Any other mix of 241Am, 133Ba, 60Co, 137Cs and 152Eu can be produced on request for specific activities.

Technical information

Uncertainties

Units

Uncertainty is the estimate of a possible variation between the level of activity measured by LEA and the actual activity.

The uncertainty indicated in the calibration certificate corresponds to the expanded uncertainty expressed with a k=2enlargement factor. The value of the enlargement factor is related to the desired confidence level:

- 68% for k = 1
- 95% for k = 2
- 99% for k = 3

These percentages correspond to the application of the gaussian mathematical function.

The other unit, still in use, is the curie (Ci) which corresponds to the number of nuclei that disintegrate in one gram of radium 226 per second (old system). $1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bg}$

1 Bq	≈ 27 pCi	1 Ci	≈ 37 GBq	
1 kBq	≈ 27 nCi	1 mCi	≈ 37 MBq	
1 MBq	≈ 27 µCi	1 µCi	≈ 37 kBq	
1 GBq	≈ 27 mCi	1 nCi	≈ 37 Bq	
1 TBq	≈ 27 Ci	1 pCi	≈ 37 mBq	
T = tera	(10 ¹²)	m = mi	lli (10 ⁻³)	
G = gig	a (10º)	µ = mic	ro (10 ⁻⁶)	
M = me	ga (10º)	n = nano (10 ⁻⁹)		
k = kilo	(10 ³)	p = pic	o (10 ⁻¹²)	

The unit of radioactivity adopted by the International System of Units (SI) is becquerel (Bq). This unit corresponds to the transformation of a nucleus with emission of ionizing radiation. This is called disintegration. Bq = the number of decays ofone nucleus per second.

Conversion table Becquerel/Curie

Calibration standard

A calibration standard is a source which activity is defined well enough in order to be used for equipment calibration. Measurement of calibration standards must meet traceability equipments to SI.

Radioactive purity

The standards described in this catalog are produced from raw materials containing a minimum of radioactive impurities. Care is taken to minimize impurities throughout the production process. Impurities in the finished products are identified and analyzed using α or γ spectrometry.

Impurity contents are stated in the calibration certificate at the reference date.

appendices

RN		PERIOD			α		ß	AIN EMISSIC	NS *		v	,	SPECIFIC	ACTIVITY	IAEA EXEMPTIO Solid source	N THRESHOLDS** Liquid source	FRANCE EXEMPTIC Solid source	DN THRESHOLDS*** Liquid source
	Years	Days	Seconds	E (MeV)	Ratio	E Max (keV)	E moy (keV)	Ratio	E (keV)	Ratio	E (keV)	Ratio	Bq/g	Ci/g	Activity (kBq)	Concentration (kBq/g)	Activité • Activity (kBq)	Concentration (Bq/g)
Ag110m		2,50E+02	2,16E+07	-	-	83.1 529.9	21.6 165.3	67.5% 30.8%	-	-	657.8 763.9 884.7 937.5 1384.3 1505.0	94.4% 22.3% 74.0% 34.5% 24.7% 13.2%	1,76E+14	4 751	1 000 kBq	0,01 kBq/g	1 000 kBq	0,0001 kBq/g
Am241	432,6	1,58E+05	1,37E+10	5.388 5.443 5.486	1.7% 13.2% 84.5%	-	-	-	13.8 17.1 21.2	13.0% 18.9% 4.8%	59,5	35,8%	1,27E+11	3,43	10 kBq	0,001 kBq/g	10 kBq	0,0001 kBq/g
Ba133	10,5	3,83E+03	3,33E+08	-	-	-	-	-	21.2 30.6 31.0 35.1 35.9	4.8% 34.0% 62.8% 18.2% 4.6%	81.0 302.8 356.0 383.8	32.9% 18.3% 62.1% 8.9%	9,43E+12	255	1 000 kBq	0,1 kBq/g	1 000 kBq	-
C14	5 700	2,08E+06	1,80E+11	-	-	156,5	49,2	100%	-	-	-	-	1,66E+11	4,48	10 000 kBq	10 kBq/g	10 000 kBq	0,001 kBq/g
Ca45		1,63E+02	1,41E+07	-	-	256,4	77,2	100%	-	-	-	-	6,58E+14	17 795	10 000 kBq	10 kBq/g	10 000 kBq	0,1 kBq/g
Cd109		4,62E+02	3,99E+07	-	-	-	-	-	22.0 22.2 25.0 25.5	29.0% 54.7% 15.1% 2.6% 22.8%	88	3,6%	9,59E+13	2 593	1 000 kBq	10 kBq/g	1 000 kBq	0,001 kBq/g
Ce139		1,38E+02	1,19E+07	-	-	-	-	-	25.5 33.0 33.4 37.9 38.8	41.9% 12.5% 3.1%	165,9	79,9%	2,52E+14	6 822	1 000 kBq	0,1 kBq/g	1 000 kBq	0,001 kBq/g
Cl36 Cm244	301 000 18,1	1,10E+08 6,61E+03	9,50E+12 5,71E+08	5.763 5.805	23.3% 76.7%	708,6	251,2	98,1% -	- 17,1	- 8,7%	-	-	1,22E+09 2,99E+12	0,033 80,9	1 000 kBq 10 kBq	10 kBq/g	1 000 kBq 10 kBg	0,001 kBq/g 0,001 kBq/g
	10,1			5.805							14.4	9.1%			· · · · · · · · · · · · · · · · · · ·	0,01 kBq/g		
Co57		2,72E+02	2,35E+07	-	-	-	-	-	6.4 7.1	50.0% 7.1%	122.1 136.5	85.5% 10.8%	3,12E+14	8 425	1 000 kBq	0,01 kBq/g	1 000 kBq	0,001 kBq/g
C060	5,27	1,92E+03	1,66E+08	-	-	317,3	95,6	99,8%	-	-	1173.2 1332.5	100% 100%	4,18E+13	1 130	100 kBq	0,01 kBq/g	100 kBq	0,0001 kBq/g
Cr51		2,77E+01	2,39E+06	-	-	-	-	-	4.9 5.4	20.1% 2.7%	320	9,8%	3,42E+15	92 383	10 000 kBq	1 kBq/g	10 000 kBq	0,1 kBq/g
Cs134	2,06	7,52E+02	6,51E+07	-	-	88.8 415.4 658.1	23.5 123.5 210.0	27.2% 2.5% 70.2%	-	-	563.2 569.2 604.7 795.8 802.0	8.4% 15.4% 97.6% 85.5% 8.7%	4,78E+13	1 292	10 kBq	0,01 kBq/g	10 kBq	0,0001 kBq/g
Cs137	30,1	1,10E+04	9,48E+08	-	-	514.0 1175.6	174.3 416.3	94.4% 5.6%	31.8 32.2	1.9% 3.6%	661,7	85%	3,21E+12	86,8	10 kBq	0,01 kBq/g	10 kBq	0,0001 kBq/g
Eu152	13,5	4,93E+03	4,27E+08	-	-	175.4 384.8 695.6 1474.5	47.4 112.3 221.7 535.4	1.8% 2.4% 13.8% 8.2%	6.4 39.5 40.1 45.5 46.7	13.0% 20.8% 37.7% 11.8% 3.0%	121.8 244.7 344.3 778.9 867.4 964.1	28.4% 7.6% 26.6% 13.0% 4.2% 14.5%	6,43E+12	174	1 000 kBq	0,01 kBq/g	1 000 kBq	0,0001 kBq/g
Fe55	2,75	1,00E+03	8,67E+07	-	-	-	-	-	5.9 6.5	25.0% 3.4%	- 904.1	-	8,75E+13	2 365	1 000 kBq	10 kBq/g	1 000 kBq	1 kBq/g
Fe59		4,45E+01	3,84E+06	-	-	273.6 465.9	81.0 149.5	45.2% 53.3%	-	-	1099.2 1291.6	56.6% 43.2%	1,84E+15	49 723	1 000 kBq	0,01 kBq/g	1 000 kBq	0,001 kBq/g
H3	12,3	4,49E+03	3,89E+08	-	-	18,6	5,7	100%	-	-	-	43.2%	3,58E+14	9 676	1 000 000 kBg	1 000 kBq/g	1 000 000 kBg	0,1 kBq/g
l125		5,94E+01	5,13E+06	-	-	-	-	-	27.2 27.5 31.1 31.8 27.2	39.7% 74.0% 21.2% 4.6% 39.7%	35,5	6,7%	6,50E+14	17 578	1 000 kBq	1 kBq/g	1 000 kBq	0,1 kBq/g
1129	16 100 000	5,88E+09	5,08E+14	-	-	-	-	- 1%	27.5 31.1 31.8	39.7% 74.0% 21.2% 4.6%	35,5	6,7%	6,37E+06	0,00017	100 kBq	0,1 kBq/g	100 kBq	0,00001 kBq/g
l131		8,02E+00	6,93E+05	-	-	247.9 333.8 606.3	69.4 96.6 191.6	2.1% 7.4% 89.4%	29.5 29.8	1.5% 2.8%	284.3 364.5 637	6.1% 81.2% 7.3%	4,59E+15	124 189	1 000 kBq	0,1 kBq/g	1 000 kBq	0,01 kBq/g
Mn54		3,13E+02	2,71E+07	-	-	-	-	-	5.4 6.0	22.7% 3.1%	834,8	100%	2,86E+14	7 719	1 000 kBq	0,01 kBq/g	1 000 kBq	0,0001 kBq/g
Na22	2,60	9,49E+02	8,21E+07	-	-	546,4	215,5	89.8%	-	-	511 1274.5	178% 100%	2,31E+14	6 241	1 000 kBq	0,01 kBq/g	1 000 kBq	0,0001 kBq/g
Ni63	98,7	3,60E+04	3,11E+09	-	-	67,0	17,4	100%	-	-	-	-	2,13E+12	57,5	100 000 kBq	100 kBq/g	100 000 kBq	0,1 kBq/g
Np237	2 140 000	7,81E+08	6,75E+13	4.766 4.771 4.788	9.5% 25.0% 47.0%	-	-	-	15,7	54,5%	29.4 86.5	15.3% 12.3%	2,61E+07	0,00070	1 kBq	0,001 kBq/g	1 kBq	0,001 kBq/g
P32		1,43E+01	1,23E+06	4.788 -	-	1710,7	695,5	100%	-	-	-	-	1,06E+16	285 566	100 kBq	1 kBq/g	100 kBq	1 kBq/g
Pm147	2,62	9,56E+02	8,28E+07	-	-	224,7	62,0	100%	-	-	-	-	3,43E+13	927	10 000 kBq	10 kBq/g	10 000 kBq	1 kBq/g
Pu238	87,7	3,20E+04	2,77E+09	5.456 5.499	28.8% 71.0%	-	-	-	16,2	10,6%	-	-	6,33E+11	17,1	10 kBq	0,001 kBq/g	10 kBq	0,0001 kBq/g
Pu239	24 100	8,80E+06	7,61E+11	5.106 5.144 5.157	11.9% 17.1% 70.8%	-	-	-	16,2	4,7%	129.3 375.0 413.7 451.5	0.00631% 0.00154% 0.00146% 0.000187%	2,30E+09	0,062	10 kBq	0,001 kBq/g	10 kBq	0,0001 kBq/g
S35		8,73E+01	7,54E+06	-	-	167,1	48,6	100%	-	-	-	-	1,58E+15	42 710	100 000 kBq	100 kBq/g	100 000 kBq	0,1 kBq/g
Sn113		1,15E+02	9,94E+06	-	-	-	-	-	24.0 24.2 27.3 27.9 13.3 13.4	27.7% 51.9% 14.6% 2.8% 17.2%	255.1 391.7	2.1% 65.0%	3,71E+14	10 037	10 000 kBq	1 kBq/g	10 000 kBq	0,001 kBq/g
Sr85		6,49E+01	5,60E+06	-	-	-	-	-	13.4 15.0	2.8% 17.2% 33.0% 8.0%	514	98,5%	8,76E+14	23 680	1 000 kBq	0,1 kBq/g	1 000 kBq	0,001 kBq/g
Sr89		5,06E+01	4,37E+06	-	-	1495,1	584,6	100%	-	-	-	-	1,07E+15	29 002	1 000 kBq	1 kBq/g	1 000 kBq	1 kBq/g
Sr90 Tl204	28,8 3,79	1,05E+04 1,38E+03	9,09E+08 1,20E+08	-	-	545,9 763,7	195,7 243,9	100% 97,1%	-	-	-	-	5,10E+12 1,71E+13	138 462,475	10 kBq 10 kBq	0,01 kBq/g 10 kBq/g	10 kBq 10 kBq	0,001 kBq/g 0,001 kBq/g
Tc99	214 000	7,81E+07	6,75E+12	-	-	293,7	85,4	97,1%	-	-	-	-	6,24E+08	462,475 0,017	10 000 kBq	10 kBq/g	10 000 kBq	0,001 kBq/g
				4,729	1.6% 13.2% 84.4%										· · · ·			
U233 Y88	1 590	5,80E+05	5,02E+10 9,21E+06	4.783 4824	13.2% 84.4%	-	-	-	15,7 14.1 14.2 15.9 16.1 8.0 8.9	5,3% 17.3% 33.2% 8.2%	898.0 1836.1	93.9% 99.3%	3,57E+10 5,15E+14	0,965 13 911	10 kBq 1 000 kBq	0,001 kBq/g 0,01 kBq/g	10 kBq 1 000 kBq	0,001 kBq/g -
7n65		2 44F+02	2 11F+07	-		329.9	143.1	1.4%	16.1 8.0	34.7% 4.8%	511.0 1115.5	2.8% 50.2%	3,04E+14	8 230	1 000 kBq	0.01 kBa/a	1 000 kBq	0.0001 kBa/a
Zn65		2,44E+02	2,11E+07	-	-	329,9	143,1	1,4%	8.9	4.8%	1115.5	50.2%	3,04E+14	8 230	I OOO KRd	0,01 kBq/g	1 000 kRd	0,0001 kBq/g

4137 Commerce Circle Idaho Falls, ID 83401 Sales & Product Distribution 208.524.5300

radqual.com sales@radqual.com